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The general inverse problem of heat and mass transfer in a porous reactive 
material is reduced to a set of particular problems by using splitting of the 
problem according to chemical and physical processes. A brief exposition is 
given of the methods for solving these particular inverse problems. 

I. To raise the accuracy of computations in the mechanics of reactive media, more and 
more complex formulations of the problem are utilized at this time [i]. The complication 
proceeds in the direction of a more complete and detailed accounting of the structure and 
manifold of physicochemical transformations, extensive propagation of the conjugate as well 
as the two- and three-dimensional formulations of the problems. In all cases the extensive 
introduction into practice is repressed by the absence of information about the thermophysi- 
cal coefficients, the thermokinetic constants of heterogeneous and homogeneous chemical 
reactions, and the flow characteristics on the surface of the streamlined reactive body. 
The characteristics mentioned can be determined as a result of solving inverse problems. 

The following scheme is proposed for investigating complex inverse problems: i) the 
most complete mathematical model is written on the basis of an analysis of a physicochemical 
model of the processes; 2) the most essential factors are exposed, say, on the basis of an 
analysis of dimensionalities and similarity, time expenditures of the researcher and the 
computer are taken into account and a more optimal, compromise mathematical model is construc- 
ted; 3) a search of available literature data is conducted, laboratory tests are planned and 
performed on specimens of the materials being investigated under conditions as close as pos- 
sible to the full-scale conditions in order to determine the unknown characteristics and to 
obtain information to estimate the adequacy of the mathematical model; 4) appropriate parti- 
cular inverse problems are posed and solved; 5) the direct problem is solved by using the ob- 
tained transfer coefficients and thermokinetic constants; the solution obtained is compared 
with full-scale and model experimental data. 

As an example, let us consider the mathematical model of heat and mass transfer process- 
es in a porous reactive material (glass-plastic) in a one-dimensional nonstationary formula- 
tion 
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Fig. i. Relative weight loss for specimens of the materials 
VPR-10 + IFED (i) and VPR-10 + EKhD (2) for q = 0.085 K/sec; 
points are computed values. T, K. 

Fig. 2. Initial temperature T w (i) and heat flux QW (2) and 
mass entrainment rate R e (3) restored from the solution of 
the pseudo-inverse problem as a function of the time t. T, 
K; Qw, W/mi; Re, kg/(mz'sec); t, sec. 
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The system (1 ) - (8 )  i s  w r i t t e n  fo r  moderate hea t i ng  t imes and tempera tures  of up to ap- 
) rox imate ly  lO00~ The s e q u e n t i a l  scheme of two p y r o l y s i s  r e a c t i o n s ,  the  f i l t r a t i o n  of 
gaseous products, the conductive and convective heat transfer, the diffusion of gaseous 
components (the "fuel-oxidizer" scheme) and heat absorption in a glass-plastic according 
to the Bouger law is taken into account. 

To solve specific problems this system of equations should be supplemented by appro- 
priate initial and boundary conditions, and the coefficients of the mathematical model 
are determined in the form of constants or of certain approximate dependences. 

II. Using the method of splitting the problem according to physical and chemical pro- 
cesses, inverse problems of different types may be set up. Thus, if the characteristic 
times of the heat conduction, diffusion, and filtration processes are much less than the 
characteristic time of pyrolysis [i, 2] 

d d t,:=--a--<t p, t o = - - d - ~  t~, te : = - - ~ t p ,  (9 )  
U ,  

i . e . ,  the  process  proceeds under homotherinal c o n d i t i o n s ,  the  h (1 ) - (3 )  d e s c r i b i n g  the  py ro ly -  
s i s  of g l a s s - p l a s t i c s  fo r  a known time dependence of  the  temp0rature  are  sepa ra t ed  out of  
equa t ions  ( 1 ) - ( 8 ) ,  and an inve r se  k i n e t i c  problem can be fo rmula ted  fo r  t h i s  p rocess :  De- 
termine the kinetic constants from time dependences of the specimen temperature and weight 
known from experiment. The algorithm for the SolUtion of such a problem was constructed by 
minimization of the residual 
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by a q u a s i g r a d i e n t  method by us ing s e a l i n g  of the  v a r i a b l e s  [2].  

Resu l t s  of so lv ing  the  inve r se  problem and comparison wi th  experiment  by thermal  de- 
composi t ion on a de r iva tog raph  are  given in the  t a b l e  and in Fig .  i fo r  the  m a t e r i a l s  VPR- 
10 + IFED and VPR-IO + EKhD. I t  i s  seen t h a t  agreement i s  good enough between the  expe r i -  
mental  and computed va lues  of the  specimen weights .  The accumulat ion of the  i n t e r m e d i a t e  
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TABLE i. Kinetic Constants of the Thermal Decomposition of 
Glass-Plastics Based on VPR-10 

Binder 

IFED 

EKhD 

Experiment conditions 

q, K / s e c  T, K 

0,085 373--1023 

0,085 373--1073 

h, 1 / s ec  

0,122.10~ 

0,334 
0,527.107 

0,526.10-1 

E/R, K 

10670 

5480 

13050 

4000 

0,48 

0 

0,59 

0 

pyrolysis product -- pyrosol -- is extracted by dashed line in the figure. The first stage 
is endothermal in nature while the second is associated with the formation of a coke resi- 
due and is exothermal. 

Similar results are also obtained for other heating times and materials. It should be 
noted that as the heating time increases the kinetic constants also change, as was noted in 
[3, 4] and generalized in [5]. Consequently, to utilize the kinetic constants under con- 
ditions of a sharp distinction from experiment, they must be corrected. Some of the methods 
are given in [5]. 

Among the inverse problems of chemical kinetics are also problems on determining the 
thermokinetic constants of heterogeneous chemical reactions. Problems on determining the 
activation energy and the preexponential of the oxidation reaction of the carbon-graphite 
material EG-0 and polymethylmetacrylate are solved. The existence and uniqueness of the 
solution of these problems are proved [2]. 

III. Inverse boundary value problems of heat and mass transfer are formulated as foi- 
lows: On the basis of known initial conditions, boundary conditions on the internal body 
surface Y3, and an additional condition about the temperature on the external heated body 
surface Yl(t) or at a certain interior point Y2, restore such important heat and mass trans- 
fer characteristics as the heat flux and mass entrainment rate was well as the field of all 
the desired functions in the whole domain of integration D{YI(t) ~ y ~ Y3, 0 ~ t ~ t K} on 
the surface Yz(t). The function Y1(t) is considered known. When the temperature on the 
body surface is given as the additional condition, the problem is called pseudo-inverse. 
A simpler mathematical model of the physicochemical processes than (1)-(8) was used in its 
solution: heat transfer by radiation and heterogeneous chemical reactions were not taken 
into account, the material was modeled by a four-component porous reactive medium consisting 
of the original polymer binder, a coke residue, a gas phase, and a filler, respectively. 
Adiabaticity, nonpenetration, and the derivative of the gas density with respect to the 
space coordinate equal to zero were used as boundary conditions on the surface Ya. The per- 
meability coefficient was determined from the Kozeni-Karman formula and the dynamic viscosity 
from the Sutherland formula. The solution of the pseudo-inverse problem was performed numer- 
ically by IIM [6] for a material similar in its properties to a glass-plastic with an epoxy- 
phenolic binder. The iteration process of the search for the desired functions in a new time 
layer was terminated upon satisfaction of given accuracy or the maximal number of iterations. 
The initial surface temperature T w as well as the heat flux Qw and the rate of mass entrain- 
ment R e found from solving the inverse heat and mass transfer problem are presented in Fig. 
2. 

When the temperature at a certain interior point of the body is given instead of the 
temperature on the reactive body surface and the heat flux at this point is different from 
zero, a direct numerical method and a regularizing algorithm on the basis of a Tkhonov 
method [7] were used to solve the inverse problem. A generalized heat conduction equation 
given in a domain with moving boundaries was used to describe the heat transfer process in 
the body. Stability of the solution of the inverse heat conduction problem was achieved 
when using the direct numerical method by step regularization and smoothing of the initial 
temperature by spline functions or by the Tikhonov method. Selection of the regularization 
parameter when solving the inverse heat conduction problem by using the regularizing algo- 
rithm was realized by the residual principle. The following changes [8] were introduced 
in the known algorithm from [7] to obtain a stable solution of the inverse heat conduction 
problem when using the original temperature given with error. Firstly, the solution of the 
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direct heat conduction problem was realized in the residual method by using IIM in the 
whole domain D. Secondly, the heat flux coming into the body was determined from solution 
of the direct heat conduction problem by an analytic formula obtained on the basis of IIM. 
This algorithm is well recommended for the processing of the heat flux sensor readings. 
Its detailed numerical investigation was performed in [8]. 

IV. The next type of inverse heat and mass transfer problem are coefficient inverse 
problems. They are realized if the characteristic filtration time is much less than the 
characteristic heat conduction time tf << t e mld are formulated as follows. Determine ther- 
mophysical characteristics of the reactive material X, pCp by means of known initial con- 
ditions, boundary conditions on the exterior and interior surfaces of the material and by 
the known temperature at inner points of the body. The specimen heating modes can be ar- 
bitrary but assuring specimen heating in the temperature band of interest. To simplify the 
computations the specimen is selected in such a shape that heat propagation therein would 
be one-dimensional. Conditions were here conserved that assure a unique solution of the 
inverse problem [2, 9, i0]. A parametric representation of the thermophysical characteris- 
tics desired was used. A direct numerical method and an iteration algorithm based on the 
method of conjugate gradients with coordiante transformation [2] were used to determine the 
approximation parameters. In the first case the mathematical model of the process con- 
sisted of one heat conduction equation with effective thermophysieal characteristics, and 
in the second, of a system of heat and mass transfer equations. In contrast to [ii], a dif- 
ference approximation of the partial derivatives of the functional with respect to the pa- 
rameters was used when using the iteration algorithm, which was caused by the difficulty in 
determining the gradient of the functional in terms of the solution of the conjugate problem. 
The approximation and numerical differentiation of the experimental temperature in the di- 
rect numerical method were conducted by using cubic B-splines. Stability of the solution in 
this method was achieved because of step regularization and utilization of an iteration reg- 
ularizing algorithm from [2] for the solution of the system of linear algebraic equations 
to determine the approximation parameters. Instability of the solution in the gradient 
method of parametric optimization was eliminated because of the selection of the ultimate 
amount of iterations consistent with the known integral error of the original data. The 
results of the numerical investigation of the inverse coefficient heat conduction problem 
are presented in [2]. 

When the structure of the multiphase reactive medium and the thermophysical coefficients 
of its components are known, formulas obtained on the basis of the theory of the generalized 
heat conduction and the additivity principle [i] were used to determine the heat conduction 
coefficients and the specific heats of the medium during the solution of the direct and 
pseudoinverse heat and mass transfer problems. 

As a rule, the method of splitting a complex problem according to chemical and physi- 
cal processes and in this connection simplified problem formulations are utilized in the 
solution of inverse heat and mass transfer problems. However, the effective thermokinetic 
and thermophysical coefficients influence each other, consequently, algorithms for their 
simultaneous determination have been proposed recently which would permit taking account 
of the mutual influence of the coefficients. The efficiency of these algorithms is con- 
firmed by the solution of model examples. 

NOTATION 

y, spatial coordinate; t, time; T, temperature; p, density; P, pressure, v, velocity; 
~, volume fraction; c, mass concentration; M, molecular weight; D, effective diffusion co- 
efficient; Rs, mass rate of formation of gaseous pyrolysis products; Rk, coefficient of radi- 
ation attenuation in the Bouger law; Re, mass entrainment rate; k, permeability coefficient; 
p, dynamic viscosity; X, heat-conduction coefficient; Cp, specific heat; kl, El, ql, k2, E2, 
q2, preexp0nential, the activation energy, and the thermal effects of the first and second 
reactions, respectively; qR, magnitude of the radiation flux absorbed by the material; q, 
specimen heating time; ~i, e2, reduced stoichiometric numbers; R, universal gas constant; 
Q, heat flux; te, tD, tf, tp, characteristic times of the heat conduction, diffusion, fil- 
tration and pyrolysis processes; a, thermal diffusivity coefficient; u,, characteristic 
filtration rate; Pi e , Pi, experimental and theoretical values of the specimen weight; Wi, 
statistical weight; g, free-fall acceleration; V, specimen volume; Y1(t), YB, coordinates of 
the external and internal body surfaces; Y2, coordinate of an interior point of the body with 
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a known temperature. Subscripts: i, initial binder; 2, 3, intermediate and condensed 
pyrolysis products; 4, inert filler; 5, gas phase; ~, number of the gaseous component; H, 
initial state; K, final state; w, surface Y:(t). IIM, iteration-interpolation method. 
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SOLUTION OF A TWO-DIMENSIONAL HEAT-CONDUCTION PROBLEM 

FOR A GEOMETRICALLY COMPLEX DOMAIN BY AN INTEGROINTER- 

POLATION METHOD 

N. V. Kerov UDC 536.24 

A methodology is proposed for the construction of an algorithm to solve heat 
transfer problems for spatial domains of complex geometric shape. 

The creation of a new engineering operating under high-temperature loading or intensive 
cooling conditions is associated with carrying out a large amount of special temperature 
investigations of materials and structures. Such operations are a constant necessity for 
many branches of industry, consequently, thermal computation methods are also perfected 
simultaneously with the rise in the demands on engineering systems. Computational algorithms 
based on one-dimensional formulations of heat transfer problems are most widespread. If a 
notable fraction of algorithms arrived earlier at analytic methods of solution, then numer- 
ical methods have acquired greater weight at this time in connection with the development 
of computer technology. These methods possess a substantial advantage resulting from the 
possibility of their utilization for different formulations of problems, for instance, with 
any nonlinearities taken into account. 

However, when studying fine physical processes associated with structure heating, it 
is already not always sufficient to utilize a one-dimensional heating model Hence, a large 
quantity of researches has appeared devoted to methods and algorithms for the solution of 
heat transfer problems in multidimensional formulations. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 3, pp. 464-471, March, 
1989. Original article submitted April 18, 1988. 

0022-0841/89/5603-0327512.50 �9 1989 Plenum Publishing Corporation 327 


